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Background

• Why accuracy important?
- Inaccurate prediction can erode operability 
à unexpected compressor stall at off-design
à 2% error in predicted metal temperature can halve blade life (Han et al. 2012)

- Inaccurate prediction of complex flows can cost 0.5% efficiency 
à small gains have significant impact on fuel use (>300 billion litres!), emissions and potential uptake of new fuels

• Why do we need better turbulence models?
Example of gas turbines
- Correlation-based approaches unable to improve efficiency
- Experiments expensive
- High-fidelity simulations too expensive for design

(> 1015 DOF)

https://www.geaviation.com/commercial/engines/ge9x-commercial-aircraft-engine



Key Challenges for RANS in Turbomachinery

Pressure 
gradients

Blade-to-blade effects

Surface 
curvature, 
transonic flow

Deterministic unsteadiness
Blade-to-blade interaction, vortex 
shedding, intermittent wakes

Blade-row to blade-row effects

Axial turbines

Challenges that lead to inaccuracies:
• Enthalpy and thermal mixing not correct

à recalibrate coefficients (NOT GENERAL)

• Transition
– Natural
– Bypass
– Separated flow transition 
à Transition models (MORE MODELING)

• Deterministic vs stochastic unsteadiness
– Vortex shedding
– Wakes
– SBLI

à URANS (spectral gap!)

• Misalignment of        and
– Non-equilibrium BL, Wake distortion

à Fix inherent model error (ML?)



Background – Gene Expression Programming

We want a symbolic regression approach to develop turbulence models from hi-fi data
• Get robust CFD-ready models (plug and play) 
• Interpretable
• Training on simulation or experimental data
• Train models for unsteady flows

Evolutionary Algorithm

Evolutionary concepts borrowed from biology (evolve suitable functions)

How do we evolve symbolic expressions that are syntactically correct?
- Gene Expression Programming (GEP) transforms symbols to equations (Ferreira, 2001) :

Chromosome - list of symbols (exists in code)

Expression tree

Predictive model  (valid expression - can be 
nonlinear)

Head – function set Tail – terminal set

• Survival of fittest idea
• Incremental improvements via genetic operations (cloning, mutation, crossover)



Background – Gene Expression Programming

Schematic of evolutionary algorithm:

Evaluate fitness of models

Natural selection

Initialize random 
population of models

Apply genetic modifications
(mutations, transpositions, 

combinations)

Update population
to next generation

• Set of predictive models (population) is developed over multiple generations to fit the available training data

• The fittest model of the last generation is the training outcome 

• Can do that with tensors and vectors as well (Weatheritt & Sandberg, JCP 2016)



Gene Expression Programming for turbulence modelling

Development of improved anisotropy model (Weatheritt & Sandberg, 2016)

Extend the linear model to include higher order gradients
Basis Functions

Pope (1975)
Strain rate tensor:
Vorticity rate tensor:
turbulent time scale:

Independent scalar variables
Unknown coefficients, functions 
of independent variables

With high-fidelity data try to find zk and 
xk as functions of independent variables Ik

Extension of approach by introducing correction to production in k-w equations (Schmelzer et al., 2020)

Independent tensor variables

Unknown coefficients, functions 
of independent variables

Pool of symbols:



Gene Expression Programming – statistically 2D flows

1) Reynolds stress:

Periodic Hills

Eq. 1
Eq. 2

Apply trained model to 
different flow

LES-TL: reference LES
Linear : linear RANS model (SST)
SSG     : non-linear EASM model
M-GEP: ensemble average of

trained models
Eq 1/2 : individual new models

Training case

(Weatheritt & Sandberg, 2016)

2) Heat flux vector:

New models tested on 9 other cases with 
different slot geometries and Blowing Ratios –
2 examples

High fidelity
Baseline RANS
EDM on HiFi
Trained HF

EDM:
GEP model:

(Sandberg et al., JoT 2018)



Gene Expression Programming – unsteady flows



How to develop models for unsteady flows? 
• Underpinning feature of turbomachinery is interaction of stochastic (turbulence-driven) 

and deterministic (stator-rotor interaction / vortex shedding) flow unsteadiness

• Drives mixing processes of momentum & enthalpy à determines level of irreversibility 
and thus efficiency

Inertial 
subrange

En
er

gy

Deterministic &
large scale unsteadiness

Fine scale 
turbulenceDeterministic unsteadiness

spectral gap
no spectral gap Frequency/

wavenumber

Gene Expression Programming – unsteady flows



En
er

gy

Frequency/
wavenumber

spectral gap
Approach 1: Use phase-lock averaged DNS data to train models 

(Akolekar et al., JoT 2018)

Phase 1 Phase 7 Phase 16

Time average

vs

Heat-flux & Reynolds stress modelling – unsteady flows

Machine-learned models can provide information on physics



no spectral gap

En
er

gy

Frequency/
wavenumber

Approach 2: Develop bespoke model for unsteady RANS 

Lav, Sandberg & Philip (JCP 2019)High Fidelity Data

DNS, LES, 
Experiments

Triple decomposition

Split Reynolds stress tensor and 
heat flux vector using FFT/POD… 

GEP

Create candidate models
Best 
models

Test model fitness (cost function)

No Yes

Vijk ,Ik,Jk

Candidate 
fit? Turbulence stress and heat flux 

closures model only stochastic 
part of fluctuations, other scales 
need to be resolved

Bespoke GEP 
models for URANS

Machine-Learning (GEP) for unsteady flows



Approach 2: Develop bespoke model for unsteady RANS 

LES: Case A1

Untrained URANS

GEP-trained URANS

n Greatest improvement from RS model

n HF model provides most improvement 
downstream 

Case A1

Machine-Learning (GEP) for unsteady flows



Perform recursive feature elimination: Vij4 > Vij9 > Vij2 > Vij5 > Vij1 > Vij7 > Vij10 > Vij6 > Vij8

Train models using only first three basis functions

(Weatheritt et al, IJHMT 2020)

(Bodard et al., CTR 2013)

x/d=20

n Overall good improvement with GEP 
model

Gene Expression Programming – statistically 3D flows



Testing case

Training case: Square cylinder

U1

d

4d

Validation case: Cube in channel

U1
Red=40,000

Training case: Square cylinder

U1

d

4d

Validation case: Cube in channel

U1

Training case Red=11,000

reference

k-w SST

GEP aij only

x/d=4

GEP aij and R

x/d=2.5

Experiment
k-w SST
GEP aij and R

Gene Expression Programming – statistically 3D flows

(Schmelzer et al., 2020)

Perform recursive feature elimination: Vij1 > Vij4 > Vij3 > Vij2 > Vij6 > Vij5 > Vij7 > Vij10 > Vij8 > Vij9

Train models using only first four basis functions



Gene Expression Programming – statistically 3D flows

BUT: 3D bump case (BeVERLI Hill) from NATO AVT-349 
VT EXP

UniMelb Baseline RANS

UniMelb GEP RANS (aij_ON Rij_ON)

UniMelb GEP RANS (aij_OFF Rij_ON)

UniMelb GEP RANS (aij_ON Rij_OFF)

• For this case, production correction term results in too high 
TKE levels over bump, changing or even preventing 
separation entirely

• Ideally, should train new model on more similar problem 
(smooth surface)?

• Other ways to improve model consistency?



‘Frozen’ Gene-Expression Programming

Population

Genetic Modification

Natural Selection

High-Fidelity Data

Fitness Evaluation
RANS

Fitness Evaluation

Benefits:

Gene Expression Programming – CFD-driven training

‘CFD-driven’ GEP
A-posteriori cost fcn –
external code

• Built-in model 
consistency

• Flexible choice of 
variables in 
objective function

• Reduced amount of 
required high-
fidelity data



Model trained 
on HPT data 
at Re=570,000

Standard linear model
(baseline)

Machine-learnt model extension

Error reduced by 
factor > 5

Much simpler expression than from ‘frozen’ training

Gene Expression Programming – CFD-driven training

(Zhao et al., JCP 2020)



Model trained 
on HPT data 
at Re=570,000

Standard linear model
(baseline)

Machine-learnt model extension

New  model trained on one data set performs well on all test cases,
at different flow conditions and for different geometries

HPT at Re=1,100,000 LPT at Re=60,000 LPT at Re=100,000

Tested on:

Error reduced by 
factor > 5

Gene Expression Programming – CFD-driven training



CFD-driven LES (Reissmann et al., JCP 2020)

• Need to run 1,000s or 10,000s of LES – need to be ‘affordable’
• Pick Taylor-Green-Vortex as test problem
• Demanding for SGS-models as it features laminar-turbulent transition

LES setup
• Incompressible solver (PARIS (Ling et al, Int J Multiph Fl. 

2015)) – 0.75core h/run (10,000)
• Re=1,600
• Grid with 323 grid points
• Reference DNS with 2563 grid points

Gene Expression Programming – CFD-driven training

With inverse time scale

Cost function



Machine-Learning (GEP)

CFD-driven LES (Reissmann et al., JCP 2020)



Machine-Learning (GEP)

CFD-driven LES
Robustness of GEP2 model

GEP2 model produces
good results for different 
LES resolutions

GEP2 model works well 
for different Reynolds 
numbers



Multi-expression GEP training

Population

Motivation: Capturing coupling effects when
training multiple closure models

Idea:

Extension of candidate solutions from one expression to multiple expressions

Assignment of shared fitness value to each set of expressions

Exchange of genetic material only between alike expressions

Pope (1975):

Zheng (1994):

Population

Gene Expression Programming – Multi-expression
(Waschkowski et al., 2021)



Multi-expression GEP training

Gene Expression Programming – Multi-expression

Example: Vertical natural convection

How to know beforehand whether we need weights for cost function?



Multi-objective GEP training

Gene Expression Programming – Multi-objective

Fitness EvaluationFitness EvaluationIdea: NSGA-II algorithm (Deb, 2002)
Pareto domination to minimize separate 
training objectives

Example: Vertical natural convection

Significant benefits when expressions strongly coupled!

(Waschkowski et al., JCP 2021)



Legends:
• E: Experiment
• R: Baseline RANS
• 𝑈! : CFD-driven using 𝑈! as cost function
• tw+ d1 : CFD-driven using 𝜏" and d#

as cost function 

Importance of cost functions
• Have used novel multi-objective 

optimization (e.g. U and tw)

Decided to use 𝜏! and d" as 
cost functions

Turbulent boundary layers in pressure gradients – data from VT experiments

Gene Expression Programming – Multi-objective



Legends:
• E: Experiment
• R: Baseline RANS
• −10𝑜 : Model trained on case at -10o

Multi-objective model training, using -10o at Re=2.5 x 106 data, 
yields: 

Testing on 12o case at Re=3.6 x 106

Gene Expression Programming – Multi-objective

(Lav & Sandberg, SNH 2022)

Used UniBW and DLR smooth wall setup (10m/s)

Can we generalize to a completely different case? 

à downstream not so good
Needed: stronger PG datasets



Gene Expression Programming – Multi-objective

Development of improved transition modelling and wake mixing modelling for LPT
(Akolekar et al., 2022)

2 expressions: modify/extend terms in Laminar Kinetic Energy Transition model
3 objectives   :  



Gene Expression Programming – Adaptive Symbols

Introduction of additional, adaptive symbols

Motivation: Challenge for GEP to learn accurate numerical constants (Zhong et al., 2017)

Idea: Calculation of adaptive symbol values during training via gradient-based numerical optimizers

Optimizers:

Broyden-Fletcher-Goldfarb-Shanno (BFGS) algorithm

Levenberg-Marquardt (LM) algorithm

Learn: 



Gene Expression Programming – Adaptive Symbols

Introduction of additional, adaptive symbols

Population

Genetic Modification

Natural Selection

High-Fidelity Data

Fitness Evaluation

Optimizer

Wall-mounted square cylinder



Summary & Outstanding Issues

• GEP produces CFD-ready and interpretable turbulence closures

• CFD-driven GEP produces model-consistent closures
§ Only requires limited data
§ Allows for multi-expression training in which model interactions are considered
§ Enables multiple objectives (any quantity) to be met   

• CFD-driven too costly for complex (3D) geometries and high Re
• What is needed to make its use more practical?

Issues

• Are we using correct input features and basis functions?

• How do we ensure better generalizability of models?
Will we have enough data?

• GEP not that good in finding ‘hidden features’, patterns in data à can leverage NNs?



Thank you for your attention
Questions?



Backup



Approach 1: Use phase-lock averaged DNS data to train models 

Not practical to apply a different model for each phase

à chose two models, one each for which additional diffusion and non-linear terms dominate

• Mod-PA (one model for each phase) best 
performance 

• Mod-TA (model from time-average) worst 
performance 

• Mod-Phy (2 models based on flow physics) 
quite good overall 

Machine-Learning (GEP) for unsteady flows



Transition modeling

Development of improved transition modeling (Akolekar et al., 2021)

Modify/Extend Laminar Kinetic Energy Transition model (Pacciani et al., 2011)

Non-dimensional Pi groupsLaminar eddy viscosity

Transition parameter

Multi-objective modelling (multi-expression)

Development of improved transition modeling (Akolekar et al., 2021)

Modify/Extend Laminar Kinetic Energy Transition model 


